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Abstract In this paper, we adapt Tuy’s concave cutting plane method to the semi-
supervised clustering. We also give properties of local optimal solutions of the semi-
supervised clustering. Numerical examples show that this method can give a better
solution than other semi-supervised clustering algorithms do.
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1 Introduction

We consider here complete exclusive partitional clustering. For supervised classifica-
tion, the class labels of the data in a training set are known; and the task is to construct
a prediction model based on the training set. In unsupervised classification, data are
grouped without any a priori knowledge of the data labels. This paper is concerned with
semi-supervised clustering, which are algorithms assuming some knowledge about the
class labels of a subset of the data, and using this subset along with other data to par-
tition the whole data set. A priori information about the class labels of the subset in
semi-supervised clustering can be in different forms, and may not be the exact class
labels themselves. Semi-supervised clustering is favorable in situations where class
labels are expensive or impossible to obtain. Previous research on this topic has shown
that semi-supervised clustering can produce clusters conforming better to class labels
than unsupervised clustering do. There are many papers on this topic, we can only
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sketch a few below. In this paper, we sometimes refer to a data point as an instance or
a pattern, and refer to a cluster as a class or a group.

In Demiriz et al. (1999), the labels of a training set are assumed available. The
authors modify the objective function of an unsupervised technique, e.g. the k-means
clustering, to minimize both the within-cluster variance of the input attributes and
a measure of cluster impurity based on the class labels. An unsupervised learning
technique that is biased toward producing clusters as pure as possible in terms of class
distributions is used to cluster data. These clusters can then be used to predict the
classes of future points. In Gao et al. (2006), the authors consider clustering where
the background information, specified in the form of labeled examples, has moderate
overlapping features with the unlabeled data, but not in the same feature space. They
formulate the problem as a constrained optimization problem and propose two learning
algorithms to solve the problem based on hard and fuzzy clustering.

In many applications, individual labels are not known a priori; however, some
instance-level information about the relationships between some data may be avai-
lable. For example, a human expert can specify whether two instances are from the
same, or different classes, although the expert does not know the exact class labels.
Instance-level information includes must-link constraints and cannot-link constraints.
Two instances are must-linked together if they should have the same, but unknown,
class label. Likewise, two instances are cannot-linked together if they are from dif-
ferent, but unknown, groups. After the work of Wagstaff and Cardie (2000), there have
been many papers on clustering with must-link and cannot-link constraints. An early
survey on constrained classification is given in Gordon (1996). A recent bibliography
on clustering with constraints is available at Ian Davidson’s web page. Here, we are
only able to mention a few papers related to this topic. Wagstaff et al. (2001) incor-
porate instance-level constrains in the k-means clustering. They show by numerical
examples that their algorithm can reduce the number of iterations and total runtime of
clustering, provide a better initial solution, increase clustering accuracy, and generalize
the constraint information to improve performance on the unconstrained instances as
well. Instance-level constraints are also used to learn a distortion measure. Xing et al.
(2002), learn a Mahalanobis distance from the instance-level constrains and numeri-
cally show that using a Mahalanobis distance metric with instance-level constraints can
improve the accuracy of the k-means clustering. Similar experiments have also been
reported in Bar-Hillel et al. (2005) and Chang and Yeung (2006). As well, instance-
level constraints have been integrated into EM algorithms to improve the similarity of
mixture modeling clusters to class labels (Shental et al. 2003), have been incorpora-
ted into complete-link clustering by distorting pairwise proximities between instances
(Klein et al. 2002). While the above mentioned algorithms strictly enforce instance-
level constraints during each iteration, some algorithms impose a penalty on constraint
violation for probabilistic cluster assignments (Basu et al. 2004; Lange et al. 2005). A
k-means type algorithm that minimizes the constrained vector quantization error but
at each iteration does not attempt to satisfy all constraints is presented in Davidson
and Ravi (2005).

There are also semi-supervised clustering algorithms that assume both labeled data
and instance-level constraints. In Basu et al. (2003), initial labeled data are used to seed
a constrained k-means algorithm. Another class of semi-supervised clustering includes
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algorithms that allow users to iteratively provide feedback on some data (Cohn et al.
2003; Jain et al. 2006).

The focus of this paper is on clustering with instance-level constraints. In the rest
of the paper, we refer semi-supervised clustering to clustering with instance-level
constraints. We require constraints to be strictly satisfied in our algorithm. The reason
for that requirement is that if two instances are known from the same group, it is
reasonable to expect a clustering algorithm to output the same class label for them.
Likewise, for cannot-linked instances, it is logical to demand them to have different
class labels as a clustering result. As is mentioned in the previous part, numerical
results from early research show that instance-level constraints do help improve the
performance of clustering. However, semi-supervised clustering algorithms in current
literature we are aware of are all some variants of the k-means or the EM algorithm,
which can not guarantee to find a global solution. Actually, the k-means algorithm may
not even produce a local optimal solution, which we will show later by our analysis and
numerical examples. It is desirable that the clustering results be as accurate as possible.
For instance, in credit risk analysis, it is bad to assign a low credit risk customer to
the high risk group; and it is worse to classify a high risk customer into the low risk
group.

In this paper, we use a global optimization approach to solve the semi-supervised
clustering problem. Our numerical results show that our algorithm can get a better
solution than existing algorithms do. In the absence of must-links and cannot-links,
semi-supervised clustering reduces to traditional clustering, and the algorithm presents
in this paper reduces to that in Xia and Peng (2005). In addition, we give properties of
local optimal solutions for the semi-supervised clustering problem. Locating a local
optimal solution is an important step in many clustering algorithms. The k-means
algorithm is actually a local search method, i.e., moving to a neighboring point with
the smallest objective value. In semi-supervised clustering, it is tempting to replace a
set of must-linked points by the centroid of the set to save memory and computational
time. Through our analysis, we will show when the must-linked set can be replaced
by its centroid, when it can not. Thus, we hope that our results can also help improve
other semi-supervised clustering algorithms.

The remainder of the paper is organized as follows. In Sect. 2, we give our mathe-
matical model of the semi-supervised clustering. In Sect. 3, we discuss the properties
of a local solution to the mathematical model. In Sect. 4, we describe our concavity
cutting plane method for the model and discuss the complexity of our algorithm. In
Sect. 5, we give some numerical examples.

2 The mathematical model

To describe our approach to the semi-supervised clustering, in this part, we present
our mathematical model of the semi-supervised clustering problem.

Given n patterns represented as a1, . . . , an ∈ R
d , we are going to partition them into

k clusters C1, . . . , Ck . Let ci (i = 1, . . . , k) denote the centroids of Ci (i = 1, . . . , k),
which are representations of corresponding clusters. We use the k-means (square-
error) criteria in this paper, as it is the most commonly used clustering criteria. For
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the k-means criteria, the dissimilarity measure is the squared Euclidean distance; the
task is to assign each point to its closest cluster centroid.

The integer programming model. Let X = [
xi j

]
denote the cluster membership

matrix, i.e.

xi j =
{

1 ai ∈ C j

0 otherwise
(i = 1, . . . , n; j = 1, . . . , k).

For a positive semidefinite matrix M ∈ R
d×d , we denote

‖v‖2M = vT Mv (∀ v ∈ R
d).

Note that when M is positive definite, ‖ ·‖ defines a norm on R
d . When M = I, ‖v‖M

reduces to the Euclidean norm.
Then the semi-supervised k-means clustering problem can be modeled as the

following:

min
xi j , c j

k∑

j=1

n∑

i=1

xi j
∥
∥ai − c j

∥
∥2

M j
(1a)

s.t.
k∑

j=1

xi j = 1 (i = 1, . . . , n) (1b)

xr j = xs j (ar and as must-linked; j = 1, . . . , k) (1c)

x pj + xq j ≤ 1 (ap and aq cannot-linked; j = 1, . . . , k) (1d)

xi j ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , k). (1e)

In the model, we use different loss functions for different clusters in the objective
(1a). And (1b) is the assignment constraint; (1c) is the must-link constraint; (1d) is the
cannot-link constraint. The traditional clustering is a special case of (1), i.e. M j = I
(for j = 1, . . . k), (1c) and (1d) are nonexistent.

Observe that (1) is a nonconvex nonlinear integer programming model (a real-
valued function f (x) is convex on its domain D if, and only if for any two points
x1, x2 ∈ D and any scalar 0 ≤ λ ≤ 1, f (λx1)+ f ((1−λ)x2) ≤ f (λx1+ (1−λ)x2)).
For continuous minimization problems (the variables are real and continuous), there
are polynomial-time algorithms for some structural convex programs (Nesterov 2004)
(a minimization problem is called a convex program if its objective function and its
feasible region are convex); otherwise, usually only a local optimal solution can be
obtained in reasonable time. For an integer optimization problem (the variables are
integer), two common approaches of obtaining an integer feasible solution are (i)
iteratively adding cutting planes to remove fractional solutions from the continuous
relaxation of the original problem; (ii) branching on the variables to eliminate subop-
timal solutions; see Nemhauser and Wolsey (1988). In both approaches, a series of
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continuous relaxations of the original problem with increasing number of additional
linear constraints need to be solved. Because of this, large-scale integer optimization
problems without special structure are generally intractable.

Since it is difficult to solve (1) directly, we consider its continuous relaxation. To
this end, we first define some notations. Let x j represent the j th column of X , which
is the membership vector of cluster C j . We denote the number of patterns in cluster

C j by n j
def= ∑n

i=1 xi j . We first simplify the objective function (1a) by representing
c j with x j .

When n j > 0, for fixed x j ,
∑n

i=1 xi j‖ai − c j‖2M j
is convex in c j ; so the minimum

with regard to ci is attended at
∂
(∑n

i=1 xi j‖ai−c j‖2M j

)

∂c j
= 0, from which we obtain

c j =
∑n

i=1 xi j ai∑n
i=1 xi j

; i.e. c j is the centroid of C j . Note that n j = 0 implies x j = 0. In this

case, the minimum of the objective function is attained at c j = 0. Therefore, in the
rest of the paper, we set

c j =
{ ∑n

i=1 xi j ai∑n
i=1 xi j

n j > 0,

0 n j = 0.
(2)

Denote the square-error, or within-cluster variation, of cluster C j as

SSE j (x j ) =
⎧
⎨

⎩

n∑

i=1
xi j

∥∥∥ai −
∑n

i=1 xi j ai∑n
i=1 xi j

∥∥∥
2

M j

n j > 0,

0 n j = 0.

Let SSE(X) =∑k
j=1 SSE j (x j ). Then the objective function (1a) is

min
X

SSE(X).

The continuous relaxation. Let the entries of the assignment matrix X be continuous
real-valued variables instead of boolean variables in (1). We then get the continuous
relaxation of the semi-supervised clustering:

minX SSE(X)

s.t.
k∑

j=1
xi j = 1 (i = 1, . . . , n)

xr j = xs j (ar and as must-linked; r, s = 1, . . . , n; j = 1, . . . , k)

x pj + xq j ≤ 1 (ap and aq cannot-linked; p, q = 1, . . . , n; j = 1, . . . , k)

xi j ≥ 0 (i = 1, . . . , n; j = 1, . . . , k).

(3)

In the next section, we will study the properties of (1) and (3), and show when (1)
can be replaced with (3).
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3 The solutions

In this part, we study the properties of (1) and (3). It is known that the must-link
represents an equivalence relation, i.e., symmetric, reflexive, and transitive. We take
transitive closures over the constrains. A transitive closure of must-links includes all
the patterns that are must-linked together. For instance, if ai is must-linked to a j , and
a j is must-linked to al ; then ai , a j , and al are in the same must-link closure. If a
pattern is not must-linked to any other pattern, its must-link closure is a singleton. We
also take transitive closure of cannot-links. For instance, if a pattern in a must-link
closure is cannot-linked to another pattern in a different must-link closure; then the
two must-link closures are cannot-linked to each other.

The rest of this section is organized as follows. In Sect. 3.1, we prove that (3) is a
concave program and the extreme points of its feasible region are integer if cannot-links
do not exist. We also give some basic equalities that relate the variation of distorted
square-error to that of assignment variables. In Sect. 3.2, we discuss whether an optimal
solution can have empty clusters and whether the permutation of labels will affect SSE.
In Sect. 3.3, we give local optimality conditions of (1) and (3) where cannot-links are
nonexistent, and discuss how to find an integer local optimal solution. In Sect. 3.4, we
give optimality conditions for (1) and (3) in the presence of cannot-links.

3.1 General properties of the mathematical model

We first show that (3) is a concave program, i.e.,−SSE(X) is convex and the feasible
region of (3) is convex; see also Xia 2007. Thus, we can apply concave optimization
techniques to it. We use X ≥ 0 to represent that X is entry-wise nonnegative, i.e.
xi j ≥ 0 (for i = 1, . . . , n; j = 1, . . . , k).

Lemma 1 The function SSE(X) is concave and continuously differentiable over
X ≥ 0.

Proof To prove that SSE(X) is concave over X ≥ 0, we only need to show that its
Hessian exists and is negative semidefinite over X ≥ 0. To calculate the Hessian of
SSE(X), we first derive its gradient.

Let ei denote the vector whose i th entry is 1 and the remaining entries are 0. We
calculate the Hessian based on whether n j = 0 or not. When n j = 0, by definition,

∂ SSE(X)

∂xl j
= lim

t→0

SSE(X + teleT
j )− SSE(X)

t
= lim

t→0

t
∥∥al − tal

t

∥∥2
M j

t
= 0.

When n j > 0, by chain rule,

∂ SSE(X)

∂xl j
=

∥∥∥∥al −
∑n

i=1 xi j ai∑n
i=1 xi j

∥∥∥∥

2

M j

+ 2
n∑

i=1

xi j

(∑n
p=1 x pj ap

∑n
p=1 x pj

− ai

)T
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M j

⎛

⎜
⎝

al∑n
p=1 x pj

−
∑n

p=1 x pj ap
(∑n

p=1 x pj

)2

⎞

⎟
⎠.

Since
∑n

i=1 xi j

(∑n
p=1 x pj ap∑n

p=1 x pj
− ai

)
= 0 and

(
al∑n

p=1 x pj
−

∑n
p=1 x pj ap

(∑n
p=1 x pj

)2

)

is indepen-

dent of i , the second term in the above equality vanishes.
Therefore,

∂ SSE(X)

∂xl j
=

⎧
⎨

⎩

∥∥∥al −
∑n

i=1 xi j ai∑n
i=1 xi j

∥∥∥
2

M j

n j > 0 ,

0 n j = 0.

(4)

Let vl j ∈ R
d denote the difference of the lth pattern from the centroid of cluster C j ,

i.e.,

vl j
def= al − c j = al −

∑n
i=1 xi j ai∑n

i=1 xi j
.

Then from (4), we obtain that for any l, g ∈ {1, . . . , n} and j, m ∈ {1, . . . , k}:

∂2 SSE(X)

∂xl j xgm
=

{
− 2

n j
vT

l j M j vg j j = m and n j > 0

0 j �= m or n j = 0.

Let Vj denote the matrix whose lth row is the vector vT
l j . Then the Hessian of SSE j is

∇2 SSE j (X) =
{
− 2

n j
Vj M j V T

j n j > 0

0 n j = 0
,

from which we obtain that the Hessian of SSE(X),

∇2 SSE(X) =
⎡

⎢
⎣

∇2 SSE1(X)

. . .

∇2 SSEk(X)

⎤

⎥
⎦ ,

is negative semidefinite over X ≥ 0. This concludes our proof. 	

Let D denote the feasible region of (3). It is a polytope, i.e. it is bounded and is the

intersection of a finite number of half spaces (linear inequalities). It follows that D is
a convex set.

We have proved that (3) is a concave program. Next we describe the extreme points
of D, since the minimum of a concave function is achieved at some extreme points of
its feasible region.
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Proposition 1 Any integer feasible solution to (3) is an extreme point (vertex) of D.
And any extreme point of D is an integer feasible solution to (3) in the absence of
cannot-links (1d).

Proof We first prove that any integer feasible solution X of (3) is an extreme point of
D, i.e., there do not exist two points Y, Z ∈ D, Y �= Z , and a scalar 0 < λ < 1, such
that X = λY + (1− λ)Z .

For i = 1, . . . , n, assume xi j = 1, where j depends on i . From (1b), we have
xil = 0 (l �= j). Then for any 0 < λ < 1, the equality xil = λyil + (1 − λ)zil and
yil ≥ 0, zil ≥ 0 imply

yil = zil = 0 (l �= j). (5)

From (5) and (1b), we have

yi j = zi j = 1.

Therefore, Y = Z = X ; in other words, X cannot be represented as a nontrivial
convex combination of two points in D. Therefore, X is an extreme point of D.

Next, we prove that any extreme point of D is an integer feasible solution to (3)
in the absence of cannot-links. We only need to show that any non-integer feasible
solution to (3) is not an extreme point of D.

Let X be a non-integer feasible solution to (3), i.e. there exists a must-link closure
{am p }rp=1 such that for some j ∈ {1, . . . , k}, 0 < xi j < 1 (i = m1, . . . , mr ). By (1b),
there exists l �= j such that 0 < xil < 1 (i = m1, . . . , mr ). In addition, we have
0 < xi j + xil ≤ 1 (i = m1, . . . , mr ). Let Y be a matrix with yi j = xi j + xil , yil =
0, (i = m1, . . . , mr ), and other components being the same as those of X . Let Z be a
matrix with zil = xi j + xil , zi j = 0, (i = m1, . . . , mr ), and other components being
the same as those of X . Then Y, Z ∈ D. Let λ = xi j

xi j+xil
(i = m1, . . . , mr ). We obtain

X = λY + (1− λ)Z and 0 < λ < 1. Therefore, X is not an extreme point of D. 	

We have proved that the set of extreme points of D is exactly the set of integer

feasible solutions to (1) in the absence of (1d). The minimum of a concave function
is attained on the facets of its feasible region; so Proposition 1 indicates that when
cannot-links do not exist, we can solve (3) instead of (1). The traditional clustering
model fits into the above proposition. Unfortunately, SSE(X) is not strictly concave
over X ≥ 0; thus, we cannot conclude that all of its minimal solutions are the extreme
points of its feasible region. In the next part, we will describe the local solutions to (3)
and (1). From the properties of the local optimal solutions, we will derive a procedure
of moving from a non-integer solution of (3) to an integer solution with better objective
value in the presence of cannot-links. To this end, we first give some observations.

Let’s consider r (1 ≤ r ≤ n) patterns: am1 , . . . , amr , which may or may not be
must-linked together. Let 0≤ xm p j ≤ 1 denote the membership (assignment variable)
of am p related to cluster C j . Let �xm p j denote the variation of xm p j , with �xm p j > 0
(resp.< 0) if am p moves to (resp. away from) cluster C j . We’re interested in the relation
between the variation in the square-error and that in the membership of the patterns.
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Proposition 2 Assume that xold
m p j is changed to xnew

m p j
def= xold

m p j + �xm p j ≥ 0 (p =
1, . . . , r). Then the sum of square-error of cluster C j is shifted by

SSEnew
j − SSEold

j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
∥
∥
∥
∑r

p=1 �xm p j (am p−cold
j )

∥
∥
∥

2

M j

nold
j +

∑r
p=1 �xm p j

+∑r
p=1 �xm p j

∥∥
∥am p − cold

j

∥∥
∥

2

M j
nnew

j > 0 ,

∑r
p=1 �xm p j

∥∥∥am p − cold
j

∥∥∥
2

M j
nnew

j = 0 ,

(6)

where c j is defined in (2).

Proof The number of patterns in the new cluster C j is nnew
j = nold

j +
∑r

p=1 �xm p j .

There are four cases: (1) nold
j > 0, nnew

j > 0; (2) nold
j > 0, nnew

j = 0; (3) nold
j =

0, nnew
j = 0; (4) nold

j = 0, nnew
j > 0.

We first assume nold
j > 0.

Under this assumption, we first consider the case nnew
j > 0.

The new centroid of cluster C j is cnew
j = cold

j nold
j +

∑r
p=1 �xm p j am p

nnew
j

.

Therefore,

cnew
j − cold

j =
∑r

p=1 �xm p j

(
am p − cold

j

)

nnew
j

. (7)

Noting
∑n

i=1 xi j (ai j − c j ) = 0 for both old and new cluster C j by the definition
of c j , we have

SSEnew
j =

n∑

i=1

xnew
i j

∥∥∥ai − cnew
j

∥∥∥
2

M j
=

n∑

i=1

xold
i j

∥∥∥ai − cold
j + cold

j − cnew
j

∥∥∥
2

M j

+
r∑

p=1

�xm p j

∥∥
∥am p−cold

j +cold
j −cnew

j

∥∥
∥

2

M j
= SSEold

j +nold
j

∥∥
∥cold

j −cnew
j

∥∥
∥

2

M j

+
r∑

p=1

�xm p j

∥∥∥am p − cold
j

∥∥∥
2

M j
+

⎛

⎝
r∑

p=1

�xm p j

⎞

⎠
∥∥∥cold

j − cnew
j

∥∥∥
2

M j

+2
r∑

p=1

�xm p j

(
am p − cold

j

)T
M j

(
cold

j − cnew
j

)
.
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Replacing cnew
j − cold

j in the above equation by (7), we get

SSEnew
j = SSEold

j +
nold

j
(

nnew
j

)2

∥∥∥∥
∥∥

r∑

p=1

�xm p j

(
am p−cold

j

)
∥∥∥∥
∥∥

2

M j

+
r∑

p=1

�xm p j

∥∥∥am p−cold
j

∥∥∥
2

M j

+
∑r

p=1 �xm p j
(

nnew
j

)2

∥∥
∥∥∥∥

r∑

p=1

�xm p j

(
am p−cold

j

)
∥∥
∥∥∥∥

2

M j

− 2

nnew
j

∥∥∥∥∥
∥

r∑

p=1

�xm p j

(
am p − cold

j

)
∥∥∥∥∥
∥

2

M j

= SSEold
j −

∥
∥∥
∑r

p=1�xm p j

(
am p−cold

j

)∥∥∥
2

M j

nold
j +

∑r
p=1�xm p j

+
r∑

p=1

�xm p j

∥∥∥am p−cold
j

∥∥∥
2

M j
.

Now we consider nnew
j = 0. Obviously SSEnew

j = 0. If in addition,
∑r

p=1 �xm p j = 0;

then we have nold
j = 0 and SSEold

j = 0 as well. Now we assume
∑r

p=1 �xm p j �= 0.

Since nnew
j = nold

j +
∑r

p=1 �xm p j = 0, we have

cold
j =

∑r
p=1 �xm p j am p∑r

p=1 �xm p j
, SSEold

j = −
r∑

p=1

�xm p j

∥
∥∥am p − cold

j

∥
∥∥

2

M j
.

Thus, we have proved (6) under nold
j > 0.

Now, let us assume nold
j = 0.

By (2), cold
j = 0.

If nnew
j = 0, from X ≥ 0, we conclude that �xm p j = 0; hence SSEnew = SSEold =

0. That is included in (6).
Now we consider nnew

j > 0. Since nnew
j = ∑r

p=1 �xm p j , we have, cnew
j =

∑r
p=1 �xm p j am p

nnew
j

. Thus,

SSEnew
j =

r∑

p=1

�xm p j

∥∥∥am p − cnew
j

∥∥∥
2

M j
=

r∑

p=1

�xm p j
∥∥am p

∥∥2
M j

−2
r∑

p=1

�xm p j aT
m p j M j

∑r
p=1 �xm p j am p∑r

p=1 �xm p j

+
r∑

p=1

�xm p j

∥∥∥
∥∥

∑r
p=1 �xm p j am p∑r

p=1 �xm p j

∥∥∥
∥∥

2

M j
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= −

∥∥∥
∑r

p=1 �xm p j am p

∥∥∥
2

M j∑r
p=1 �xm p j

+
r∑

p=1

�xm p j
∥∥am p

∥∥2
M j

.

Therefore, we have proved (6). 	

Corollary 1 Suppose that �xm p j of am p (p = 1, . . . , r) is moved from cluster C j to
cluster Cl . Denote t = ∑r

p=1 �xm pl . Assume t ≥ 0. Then the change of the sum of
square-error is

(
SSEnew

j + SSEnew
l

)
−

(
SSEold

j + SSEold
l

)
(8)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∥∥
∥tcold

l −
∑r

p=1 �xm pl am p

∥∥
∥

2

Ml

nold
l +t

−
∥
∥
∥tcold

j −
∑r

p=1 �xm pl am p

∥
∥
∥

2

M j

nold
j −t

+∑r
p=1 �xm pl

[∥
∥am p − cold

l

∥
∥2

Ml
−

∥
∥∥am p − cold

j

∥
∥∥

2

M j

]
(nnew

j >0, nnew
l >0);

−
∥
∥
∥tcold

l −
∑r

p=1 �xm pl am p

∥
∥
∥

2

Ml

nold
l +t

+∑r
p=1 �xm pl

[∥∥am p − cold
l

∥∥2
Ml
−

∥∥∥am p − cold
j

∥∥∥
2

M j

]
(nnew

j = 0, nnew
l >0);

0 (nnew
l = 0).

Proof We have �xm p j = −�xm pl (p = 1, . . . , r), nnew
l = nold

l + t , and nnew
j =

nold
j − t . The results follow from (6) by adding the variations in the square-errors of

cluster C j and Cl together. 	


Remark 1 We assume t ≥ 0 in Corollary 1. By symmetry, via swapping l and j we
can obtain similar results for t < 0.

3.2 Empty cluster and label permutation at a local minimum

Let A represent the data matrix, i.e., let its i th row be the feature vector of pattern
ai . Let SSE∗(A; k) denote the minimum value of total with-in group square-error
sum for partitioning data A into k groups. It is known that SSE∗(A; k) is a strictly
decreasing function of k for the integer model without constraints and under Eucli-
dean metric. That means that in the traditional clustering, there is no empty cluster
at an optimum. And it is also obvious that SSE is immune to label permutation for
traditional clustering. In other words, let p(1), . . . , p(k) be a permutation of 1, . . . , k
(the set {p(1), . . . , p(k)} equals the set {1, . . . , k}); then SSE(X) = SSE(X̃), where
x̃i j = xip( j), (i = 1, . . . , n; j = 1, . . . , k). In this part, we analyze whether these
properties still hold at an optimum in the presence of must-links, cannot-links, and
non-Euclidean metrics. We define the neighborhood of a solution X to (1) to be those
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feasible assignment matrices differing from X in only one must-link closure member-
ship. Let’s first give a proposition.

Proposition 3 Let Cold
l be empty. Then the variation of the sum of square-error pro-

duced by moving �xm p of am p (p = 1, . . . , r) from C j to Cl is

SSEnew − SSEold =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑r
p=1 �xm p

∥∥∥∥am p −
∑r

p=1 �xm p am p
t

∥∥∥∥

2

Ml−M j

− nold
j

nold
j −t

t

∥∥∥
∥

∑r
p=1 �xm p am p

t − cold
j

∥∥∥
∥

2

M j

(nold
j > t),

∑r
p=1 �xm p

∥∥∥∥am p −
∑r

p=1 �xm p am p
t

∥∥∥∥

2

Ml−M j

(nold
j = t)

(9)

where t = ∑r
p=1 �xm p > 0. (Here, for a vector b ∈ R

n, we use ‖b‖2Ml−M j
to

represent bT (Ml − M j )b, although (Ml − M j ) may not be positive definite.)

Proof From the assumption that Cold
l is empty, we have nnew

l = t and cnew
l =

∑r
p=1 �xm p am p

t .
We first consider nold

j =
∑r

p=1 �xm p . This case implies nnew
j = 0 and

cold
j =

∑r
p=1 �xm p am p

t
. (10)

Therefore, from the second case in (8) we get

SSEnew − SSEold = −t
∥∥∥cold

j

∥∥∥
2

Ml
+

r∑

p=1

�xm p‖am p‖2Ml

−
r∑

p=1

�xm p

∥∥
∥am p − cold

j

∥∥
∥

2

M j
.

By (10),

−t‖cold
j ‖2Ml

= −2t‖cold
j ‖2Ml

+ t‖cold
j ‖2Ml

= −2
r∑

p=1

�xm p aT
m p

Mlcold
j +

r∑

p=1

�xm p‖cold
j ‖2Ml

.

Hence, we have

SSEnew − SSEold =
r∑

p=1

�xm p

∥∥∥
∥∥

am p −
∑r

p=1 �xm p am p

t

∥∥∥
∥∥

2

Ml−M j

.
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Now we assume nold
j >

∑r
p=1 �xm p , which implies nnew

j > 0. By the first case in
(8), we obtain the difference in SSE as

SSEnew − SSEold = −

∥∥∥
∑r

p=1 �xm p am p

∥∥∥
2

Ml

t
−

∥∥∥tcold
j −

∑r
p=1 �xm p am p

∥∥∥
2

M j

nold
j − t

+
r∑

p=1

�xm p

( ∥∥am p

∥∥2
Ml
−

∥∥∥am p − cold
j

∥∥∥
2

M j

)

= −1

t

∥∥∥∥∥∥

r∑

p=1

�xm p am p

∥∥∥∥∥∥

2

Ml

− 1

nold
j − t

∥∥∥∥∥∥

r∑

p=1

�xm p am p

∥∥∥∥∥∥

2

M j

− t2

nold
j − t

∥∥
∥cold

j

∥∥
∥

2

M j
+ 2t

nold
j − t

cold
j

T
M j

⎛

⎝
r∑

p=1

�xm p am p

⎞

⎠

+
r∑

p=1

�xm p

(∥∥am p

∥∥2
Ml
− ∥∥am p

∥∥2
M j

)
− t

∥∥∥cold
j

∥∥∥
2

M j

+2
r∑

p=1

�xm p aT
m p

M j cold
j

= −
⎛

⎝
r∑

p=1

�xm p am p

⎞

⎠

T (
Ml

t
+ M j

nold
j − t

)⎛

⎝
r∑

p=1

�xm p am p

⎞

⎠

+
r∑

p=1

�xm p

[
aT

m p
(Ml − M j )am p

]

− tnold
j

nold
j − t

cold
j

T
M j cold

j +
2nold

j

nold
j − t

cold
j

T
M j

⎛

⎝
r∑

p=1

�xm p am p

⎞

⎠

= −
⎛

⎝
r∑

p=1

�xm p am p

⎞

⎠

T (
Ml − M j

t

)
⎛

⎝
r∑

p=1

�xm p am p

⎞

⎠

+
r∑

p=1

�xm p

[
aT

m p
(Ml − M j )am p

]

− nold
j t

nold
j − t

∥∥∥∥∥

∑r
p=1 �xm p am p

t
− cold

j

∥∥∥∥∥

2

M j

=
r∑

p=1

�xm p

∥∥∥
∥∥

am p −
∑r

p=1 �xm p am p

t

∥∥∥
∥∥

2

Ml−M j
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− nold
j t

nold
j − t

∥∥∥∥∥

∑r
p=1 �xm p am p

t
− cold

j

∥∥∥∥∥

2

M j

.

We have proved (9). 	

Note that the right-hand-side of (9) is the sum of two terms, the first of which is

the distorted square-error of the must-link closure {am p }rp=1 with distortion matrix
Ml − M j ; so this term may not be zero. This implies that permutations of labels may
change SSE if distortion matrices of different clusters are not the same.

Since SSEnew − SSEold may not be negative in (9), we also conclude that if the
distance metrics for different clusters are different, some of the clusters may be empty
at an optimum. Next, we give some special cases in which no cluster is empty at a
local optimum.

Lemma 2 Assume that either

1. there are at least k different singleton-must-link closures; or
2. the distortion matrices M j for different clusters are the same; and there exist at

least k must-link closures whose centroids are different from each other.

Then at a local minimal solution to (3) or (1), no cluster is empty.

Proof We first consider solutions to (3). To prove case (1), we will show that an
assignment with some empty clusters must not be a local minimal solution to (3) if
there are at least k different singleton-must-link closures.

Assume that at a feasible solution to (3), cluster Cl is empty. Since there are at least
k different singleton-must-link closures, one of the clusters, say C j , must include
some portions of at least two different singleton-must-link closures; furthermore, at
least one of the singleton must-link closures, say am , is different from the centroid
c j . By (9), moving �xm ∈ (0, xmj ] portion of am from C j to Cl will decrease SSE

by
nold

j

nold
j −�xm

�xm

∥∥
∥am − cold

j

∥∥
∥

2

M j
> 0 without violating any feasible constraints. The-

refore, a feasible solution with an empty cluster is not a local minimal solution to
(3).

The proof for case (2) is similar to that for case (1).
Let Cl be empty in a feasible solution to (3). Since there are at least k must-link

closures whose centroids are different from each other, one of the clusters, say C j ,
must include some portions of at least two must-link closures whose centroids are
different from each other. Therefore, the centroid of at least one must-link
closure in C j , say {am p }rp=1, is different from the centroid of C j . Since am1 , . . . , amr

are must-linked together, xm1, j = · · · = xmr , j by (1c). By (9), moving �xm ∈
(0, xold

m1, j ] portion of {am p }rp=1 from C j to Cl will decrease SSE by
nold

j r �xm

nold
j −r �xm

∥∥
∥�xm

r

∑r
p=1 am p−cold

j

∥
∥∥

2

M
> 0 without violating any feasible constraints. Therefore, a local

minimal solution to (3) must not contain any empty cluster.
Letting �xm = 1 in the above proof for case (1) and case (2), we get the part of

the lemma for (1). 	
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Remark 2 Note that both cases in Lemma 2 include the traditional clustering as a
special case, with each must-link closure being singleton and the distance metrics
being Euclidean, i.e., M j ’s being the identity matrices.

3.3 Local optimum without cannot-links

In this part, we consider semi-supervised clustering with only must-links. We will
derive necessary and sufficient conditions for a local optimal solution of (3). We
will then give sufficient conditions under which (3) admits only integer local optimal
solutions. We will also give local optimality conditions for (1). Finally, we will compare
local optimal solutions of (1) and (3).

Lemma 3 Let {am1 , . . . , amr } be a must-link closure. Then at a local minimum to
(3) in the absence of cannot-link constraints (1d), xm p j > 0 (p = 1, . . . , r) iff the
following conditions hold.

r∑

p=1

∥∥am p − c j
∥∥2

M j
≤

r∑

p=1

∥∥am p − cl
∥∥2

Ml
(l = 1, . . . , j − 1, j + 1, . . . , k), (11)

where the equality can be attained only at 1
r

∑r
p=1 am p = c j = cl .

Proof We first prove the necessity by contradiction.
Assume that (11) is not satisfied at a feasible solution X to (3), i.e.,

(1) xm p j > 0 (p = 1, . . . , r), and there exists l �= j with
∑r

p=1

∥∥am p − cl
∥∥2

Ml
=

∑r
p=1

∥
∥am p − c j

∥
∥2

M j
; in addition, 1

r

∑r
p=1 am p �= c j or 1

r

∑r
p=1 am p �= cl . Or

(2) xm p j > 0 (p = 1, . . . , r), there exists l �= j with
∑r

p=1

∥
∥am p − cl

∥
∥2

Ml
<

∑r
p=1

∥∥am p − c j
∥∥2

M j
; in addition, 1

r

∑r
p=1 am p = c j = cl .

By Corollary 1, moving �xm of am p (p = 1, . . . , r) from C j to Cl with �xm ∈
(0, xold

m p j ], i.e., letting

xnew
m p j = xold

m p j −�xm, xnew
m pl = xold

m pl +� xm, (p = 1, . . . , r),

will decrease the total sum of square-error without violating any constraints. Therefore,
X is not a local minimal solution.

Now we prove sufficiency.
Let X̃ be a feasible solution to (3) satisfying (11), we need to show that SSE(X̃ +

�X) ≥ SSE(X̃) for ‖�X‖F sufficiently small and (X̃ +�X) feasible to (3).
Because of the must-link constraints (1c), we have for each must-link closure

{am p }mr
p=1 and cluster Cl (l = 1, . . . , k),

xm1l = · · · = xmmr l
def= xml , �xm1l = · · · = �xmmr l

def= �xml .

123



Y. Xia

Therefore,

mr∑

p=1

�xm pl‖am p − cl‖2Ml
= �xml

mr∑

p=1

‖am p − cl‖2Ml
. (12)

Define the index set

MCm
def= arg min

l

⎛

⎝
mr∑

p=1

∥∥am p − cl
∥∥2

Ml

⎞

⎠ .

Since X and X +�X satisfy constraints (1b), we also obtain

∑

l /∈MCm

�xml = −
∑

l∈MCm

�xml . (13)

The conditions (11) and (1b) imply that
∑

l∈MCm
xml = 1 and xml = 0 (l /∈ MCm);

together with X and �X being assignment matrices, we get

∑

l∈MCm

�xml ≤ 0 , �xml ≥ 0 (l /∈ MCm). (14)

Fixing an index mg ∈ MCm , from (11) and (12), we also have

∑

l∈MCm

mr∑

p=1

�xml

∥∥∥am p − cold
l

∥∥∥
2

Ml
=

⎛

⎝
∑

l∈MCm

�xml

⎞

⎠

⎛

⎝
mr∑

p=1

∥∥∥am p − cold
mg

∥∥∥
2

Mmg

⎞

⎠ .

(15)

The total variation in SSE is the sum of variations in SSE resulting from the variation
of memberships of each must-link closures. For each must-link closure {am p }mr

p=1, we

fix an index mg ∈ MCm . Let SSE{am p }(X̃ +�X)− SSE{am p }(X̃) denote the change

of SSE caused by the membership change in {am p }mr
p=1. Then, by (6), (12), (13), and

(15), we have

SSE{am p }
(X̃ +�X)− SSE{am p }

(X̃)

=
⎡

⎣
∑

l /∈MCm

�xml

mr∑

p=1

(∥∥∥am p − cold
l

∥∥∥
2

Ml
−

∥∥∥am p − cold
mg

∥∥∥
2

Mmg

)⎤

⎦

−
k∑

l=1

∥∥∥�xml
∑mr

p=1(am p − cold
l )

∥∥∥
2

Ml

nold
l + mr �xml

.
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When
∑

l /∈MCm
�xml > 0, because of (11) and (14), the first summation in the right-

hand-side is strictly positive and is of order O(�xml); the second summation is of order
O[(�xml)

2]. Therefore, SSE{am p }(X̃+�X)−SSE{am p }(X̃) > 0 for sufficiently small
�X .

If
∑

l /∈MCm
�xml = 0, because of (14), we get �xml = 0 (l /∈ MCm). If MCm is

a singleton, by (13), we have �xmg = 0; hence �X = 0; otherwise, the equality
in (11) holds. It follows that

∑mr
p=1(am p − cold

l ) = 0 for l ∈ MCm . Therefore,

SSE{am p }(X̃ +�X)− SSE{am p }(X̃) = 0.

We have proved that X̃ is a local minimal solution to (3). 	

In the proof of the lemma we have shown that (3) admits a non-integer local optimal

solution only when a must-link closure has more than one closest cluster centroids in
the distorted distance. The next lemma gives cases in which the solution of (3) must
be integer.

Lemma 4 Assume that the distortion matrices M j for different clusters are the same.
Also suppose that there exist at least k must-link closures whose centroids are different
from each other. Then at a local minimal solution to (3), X is an integer matrix. A
must-link closure {am p }rp=1 is assigned to cluster C j , i.e. xm p j = 1, iff

r∑

p=1

∥∥am p − c j
∥∥2

M j
<

r∑

p=1

∥∥am p − cl
∥∥2

Ml
(l = 1, . . . , j − 1, j + 1, . . . , k).

Proof We only need to show that under the assumptions of the lemma, the equality in
(11) is not satisfied at a local minimal solution to (3), since other parts are proved in
Lemma 3.

We use contradiction. Assume that at an optimal solution to (3), there existed a
must-link closure {am p }, clusters C j and Cl , such that

r∑

p=1

‖am p − c j‖2M j
=

r∑

p=1

‖am p − cl‖2Ml
.

Then by Lemma 3, c j = cl . Since Ml = M j , merging the two clusters Cl and C j would
not change the total SSE. However, after merging, we would have an empty cluster;
which contradicts Lemma 2. 	


In the traditional clustering, all the distance metrics are the same, and all the must-
link closures are singleton. The above lemma applies to this case. We thus conclude
that in the traditional clustering, all patterns are assigned to their closest centroid at
a local optimal solution to (3); and for any pattern, there is only one cluster centroid
closest to it.

Remark 3 Lemma 3 shows how to move from a non-integer solution of (3) to a local
integer optimal solution with the same or better SSE: simply assign each must-link
closure to one of the cluster from whose centroid the must-link closure has the smallest
square-error.
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Now we study local minimal solutions to (1).

Lemma 5 At a local optimal solution to (1) where cannot-link constraints (1d) are
nonexistent, a must-link closure {am p }rp=1 is assigned to C j iff the following conditions
are satisfied: for each l �= j ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑r
p=1

[∥∥am p − cl
∥∥2

Ml
− ∥∥am p − c j

∥∥2
M j

]

≥
∥
∥
∥rcl−∑r

p=1 am p

∥
∥
∥

2

Ml
nl+r +

∥
∥
∥rc j−∑r

p=1 am p

∥
∥
∥

2

M j
n j−r (n j > r);

∑r
p=1

[∥∥am p − cl
∥∥2

Ml
− ∥∥am p − c j

∥∥2
M j

]

≥
∥∥
∥rcl−∑r

p=1 am p

∥∥
∥

2

Ml
nl+r (n j = r).

(16)

Proof From (8), we have that under (16), no re-assignment of a single must-link
closure can reduce SSE. 	


Remark 4 Note that (16) is stronger than (11). A local minimal solution to (3) is not
necessarily a local minimal solution to (1); on the other hand, a local minimal solution
to (1) must be a local minimal solution to (3).

To see this, consider the following example. We want to partition 3 one-dimensional
patterns a1 = −2, a2 = 0, a3 = 3 into 2 groups, where all the must-link closures
are singleton. The optimal clustering is ({a1, a2} , {a3}). However, the suboptimal
assignment ({a1} , {a2, a3}) also satisfies (11).

3.4 Local optimum with cannot-links

In this part, we consider semi-supervised clustering with both must-links and cannot-
links.

For a must-link closure Lm = {am p }rp=1, we define an index set

Fm
def=

{
i ∈ {1, . . . , k} : No pattern in Ci is cannot-linked to {am p }rp=1

}
. (17)

Note that when cannot-link constraints do not exist, the results of swapping two sets
of patterns in two clusters are the same as re-assigning the two sets of patterns sequen-
tially. However, in the presence of cannot-links, swapping two sets of patterns in two
clusters may further change a local minimum because Fm may not equal to {1, . . . , k}.

In this part, we first describe local optimality conditions without swapping, then
consider local optimality conditions with swapping.

3.4.1 Local minimum without swapping

We consider local optimal solutions without swapping here. We modify Lemma 3 and
Lemma 5 to include cannot-links.
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Lemma 6 Let {am p }rp=1 be a must-link closure. Let Fm be defined in (17). Then at
a local minimum to (3), the assignment variables xm p j > 0 (p = 1, . . . , r), iff the
following conditions hold.

r∑

p=1

∥∥am p − c j
∥∥2

M j
≤

r∑

p=1

∥∥am p − cl
∥∥2

Ml
(l ∈ Fm \{ j}) , (18)

where equality is possible only when 1
r

∑r
p=1 am p = c j = cl .

Further assume that all the distortion matrices equal to M. Then (18) is equivalent
to

∥
∥∥∥∥

∑r
p=1 am p

r
− c j

∥
∥∥∥∥

2

M

≤
∥
∥∥∥∥

∑r
p=1 am p

r
− cl

∥
∥∥∥∥

2

M

(l ∈ Fm \{ j}). (19)

Proof The first part of the lemma is stated in Lemma 3, except that we consider Fm

instead of all the indices {1, . . . , k} for comparison. Next, we prove the second part.
Since M j = Ml = M , (18) is equivalent to

−
r∑

p=1

2aT
m p

Mc j + r‖c j‖2M ≤ −
r∑

p=1

2aT
m p

Mcl + r‖cl‖2M (l ∈ Fm \{ j}).

Dividing both sides of the above inequality by r and adding
∥∥∥ 1

r

∑r
p=1 am p

∥∥∥
2

M
to both

sides, we obtain (19). 	


Lemma 7 Let {am p }rp=1 be a must-link closure. Let Fm be defined in (17). Then at a
local optimal solution to (1), {am p }rp=1 is assigned to a cluster C j iff the following
conditions are satisfied: for each l �= j and l ∈ Fm,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑r
p=1

[∥∥am p − cl
∥∥2

Ml
− ∥∥am p − c j

∥∥2
M j

]

≥
∥
∥
∥rcl−∑r

p=1 am p

∥
∥
∥

2

Ml
nl+r +

∥
∥
∥rc j−∑r

p=1 am p

∥
∥
∥

2

M j
n j−r (n j > r) ;

∑r
p=1

[∥∥am p − cl
∥∥2

Ml
− ∥∥am p − c j

∥∥2
M j

]
≥

∥
∥
∥rcl−∑r

p=1 am p

∥
∥
∥

2

Ml
nl+r (n j = r).

(20)

Further assume that all the distance metrics are the same, i.e. M1 = · · · , Mk = M.
Then (20) is equivalent to
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥

∑r
p=1 am p

r − cl

∥∥∥∥

2

M
−

∥∥∥∥

∑r
p=1 am p

r − c j

∥∥∥∥

2

M

≥
r

∥∥
∥
∥cl−

∑r
p=1 am p

r

∥∥
∥
∥

2

M
nl+r +

r

∥∥
∥
∥c j−

∑r
p=1 am p

r

∥∥
∥
∥

2

M
n j−r (n j > r);

∥∥∥∥

∑r
p=1 am p

r − cl

∥∥∥∥

2

M
−

∥∥∥∥

∑r
p=1 am p

r − c j

∥∥∥∥

2

M
≥

r

∥∥
∥
∥cl−

∑r
p=1 am p

r

∥∥
∥
∥

2

M
nl+r (n j = r).

Proof Similar to the proof for Lemma 6. The condition (20) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−∑r

p=1 2aT
m p

Mcl + r‖cl‖2M
)
+

(∑2
p=1 2aT

m p
Mc j − r‖c j‖2M

)

≥ r2
∥∥
∥cl− 1

r

∑r
p=1 am p

∥∥
∥

2

M
nl+r + r2

∥∥
∥c j− 1

r

∑r
p=1 am p

∥∥
∥

2

M
n j−r (n j > r);

(
−∑r

p=1 2aT
m p

Mcl + r‖cl‖2M
)
+

(∑2
p=1 2aT

m p
Mc j − r‖c j‖2M

)

≥ r2
∥∥
∥cl− 1

r

∑r
p=1 am p

∥∥
∥

2

M
nl+r (n j = r).

Dividing both sides of the above inequalities by r and then adding

∥∥
∥∥

∑r
p=1 am p

r

∥∥
∥∥

2

M
and

−
∥∥∥∥

∑r
p=1 am p

r

∥∥∥∥

2

M
to the first and second terms of the left-hand-side respectively, we get

the lemma. 	


3.4.2 Local minimum with swapping

Let {am p }rp=1 be a must-link closure assigned to cluster C j . We calculate its cannot-
link closures in C j and Cl , represented as T(m) j and T(m)l , as follows:

Cannot-link closure calculation

1. Let T 0
(m) j = {am p }rp=1, T 0

(m)l = ∅, q = 0.

2. Let T q+1
(m)l = T q

(m)l∪ { must-link closures in Cl that have some patterns cannot-

linked to any pattern in T q
(m) j }.

3. Let T q+1
(m) j = T q

(m) j∪ { must-link closures in C j that have some patterns cannot-

linked to any pattern in T q
(m)l }.

4. If T q+1
(m) j
= T q

(m) j
and T q+1

(m)l
= T q

(m)l
, output T(m) j = T q+1

(m) j
and T(m)l = T q+1

(m)l
,

stop; otherwise, let q ← q + 1, goto step 2.

One way to re-assign {am P }rp=1 from Cl to C j is to switch T(m) j and T(m)l . The lemma
below gives conditions under which SSE can be reduced by switching T(m) j and T(m)l .
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Lemma 8 Re-assigning {au p }wp=1 from C j to Cl and {ahq }sq=1 from Cl to C j changes
the SSE by

SSEnew − SSEold =
w∑

p=1

(∥∥au p − cl
∥∥2

Ml
− ∥∥au p − c j

∥∥2
M j

)
+

s∑

q=1

(∥∥ahq − c j
∥∥2

M j

− ∥∥ahq − cl
∥∥2

Ml

)
− 1

nold
l + w − s

∥
∥∥∥∥∥
(w − s)cold

l −
w∑

p=1

au p

+
s∑

q=1

ahq

∥
∥∥∥∥∥

2

Ml

− 1

nold
j − w + s

∥
∥∥∥∥∥
(w − s)cold

j −
w∑

p=1

au p

+
s∑

q=1

ahq

∥∥∥∥
∥∥

2

M j

, (21)

with either of the last two terms vanishes if nold
l + w − s = 0 or nold

j − w + s = 0
respectively.

Proof The results follow from Corollary 1 with �xu p j = −1,�xu pl = 1 (p =
1, . . . , w),�xhql = −1,�xhq j = 1 (q = 1, . . . , s). 	


Remark 5 From the analysis in this part we conclude that to calculate the centroid of
a cluster, a must-link closure can be replaced by its centroid weighted by its number
of patterns; however, to search for a local minimum, a must-link closure cannot be
replaced by any single point, including its centroid.

4 Concavity cuts

By Lemma 1, (3) is a concave program. Therefore, we can apply concave optimization
techniques to it. We adapt Tuy’s cutting algorithm (Tuy 1964) to (3). A sketch of our
algorithm is given in Xia (2007). Here, we give a detailed description of the algorithm.

We will briefly describe Tuy’s cuts in the first part of this section for completeness.
However, Tuy’s cuts can’t be applied directly to (3), because its feasible region does
not have full dimension. In the second part of this section, we will show how to adapt
Tuy’s concavity cuts to (3) and prove that this method can find a global minimum of
(3) in finite steps. We will also discuss the complexity of our algorithm.

4.1 Tuy’s concavity cuts

For self-completeness, we sketch Tuy’s cuts (also known as concavity cuts) below;
see Horst and Tuy (1993) for details.

Tuy’s cutting plane method solves min
v∈D

f (v), where
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1. D ⊆ R
m is a full dimensional polyhedron, i.e. int D �= ∅;

2. f (v) is concave; and for any real number α, the level set {v ∈ R
m : f (v) ≥ α} is

bounded.

Because f is concave, its local minimum is attained at some vertices of D. Let v0 be
a local minimum and a vertex of D. Since D has full dimension, v0 has m linearly
independent edges. Assume that y1− v0, . . . , ym − v0 are linearly independent. Then
the cone originating at v0 generated by the half lines in the directions yi − v0 covers
D. Define

γ = f (v0).

Let

θi
def= sup{t : t ≥ 0, f

(
v0 + t (yi − v0)

)
≥ γ }, (i = 1, . . . , m). (22)

Let

zi def= v0 + θi (yi − v0), (i = 1, . . . , m).

Note that (1) θi ≥ 1; so Spx
def= conv{v0, z1, . . . , zn} contains v0 and all its neighbor

vertices; (2) the larger θi , the larger Spx.
Because f is concave, any point in the simplex Spx has objective value no less than

γ . Therefore, to find whether there is any solution with objective value less than v0,
one only needs to search in D\Spx. Let

U = [y1 − v0, . . . , yn − v0], π = eT Diag

(
1

θ1
, . . . ,

1

θn

)
U−1. (23)

Then the inequality

π(v − v0) > 1 (24)

excludes Spx. In other words, (24) provides a γ -valid cut for ( f, D), i.e., any v ∈ D
having objective value less thanγ must satisfy (24). Therefore, if (24) does not intersect
with D, v0 must be a global minimum. Below is Tuy’s original pure concave cutting
algorithm based on the above idea.

Tuy’s Cutting Algorithm (Algorithm V.1., Chapter V, Horst and Tuy 1993).

Initialization Find a vertex v0 of D which is a local minimal solution of f (v). Set
γ = f (v0), D0 = D.
Iteration i = 0, 1, 2, . . .

1. At vi construct a γ -valid cut π i for ( f, Di ).
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2. Solve the linear program (LP)

max π i (v − vi ) s.t. v ∈ Di . (25)

Let ωi be a basic optimal solution of this LP. If π i (ωi − vi ) ≤ 1, then stop: v0 is
a global minimum; otherwise, go to step 3.

3. Let Di+1 = Di ∩ {v : π i (v − vi ) ≥ 1}. Starting from ωi find a vertex vi+1 of
Di+1 which is a local minimum of f (v) over Di+1. If f (vi+1) ≥ γ , then go to
iteration i + 1. Otherwise, set γ ← f (vi+1), v0 ← vi+1, D0 ← Di+1, and go
to iteration 0.

Theorem 1 (Theorem V.2 Horst and Tuy 1993) If the sequence {π i } is bounded, the
above cutting algorithm is finite.

Figure 1 gives an illustration of Tuy’s concavity cuts. In the figure, we use x to
represent the variable. The polytope is the feasible region in a two-dimensional space.
The dotted curve is the level set {x ∈ R

2 : f (x) = f (x∗) = γ }. And x∗ is a local
optimal solution of f (x). The vertex x∗ has two adjacent vertices: x1 and x2. The cone
generated by x∗, x1, and x2 covers the whole feasible region. The shadowed region is
the part cut off by a Tuy’s concavity cut.

4.2 Concavity cuts for semi-supervised clustering

Note that (3) does not have full dimension, which means that it does not satisfy the
assumptions of Tuy’s concavity cuts. In this section, we will show how to adapt Tuy’s
algorithm to semi-supervised clustering. We will first give our procedure of finding a
local minimum. Our algorithm searches for a local minimum of (1), since it is stronger
than that of (3) by Remark 4. Then, we will describe how we construct the concavity
cuts. Finally, we will prove the finite convergence of our algorithm and discuss its
complexity.

Based on Remark 5, to reduce the number of variables, we consider the following
equivalent form of (3).

Fig. 1 Tuy’s Cut (adapted from Horst and Tuy (1993))
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Let Li (i = 1, . . . , N ) represent the must-link closures, i.e.,∩N
i=1Li = ∅,∪N

i=1Li =
{a1, . . . , an}, and all the patterns in Li are must-linked together. Let ri denote the num-
ber of patterns in Li . Note that ri = 1 means that Li has only a singleton.

minyi j

∑k
j=1

∑N
i=1 yi j

∑
l∈Li

∥
∥∥∥al −

∑N
s=1 ys j

∑
t∈Ls al∑N

s=1 ys j rs

∥
∥∥∥

2

M j

s.t.
∑k

j=1 yi j = 1 (i = 1, . . . , N )

ypj + yq j ≤ 1 (ap and aq cannot-linked; j = 1, . . . , k)

yi j ≥ 0 (i = 1, . . . , N ; j = 1, . . . , k).

(26)

4.2.1 Finding a local minimum

To find a local minimum of (1), we use pivot: moving from one vertex of the feasible
domain to an adjacent one that has the least SSE based on Lemma (5, 7, 8). Note that
by the results in Sect. 3, we do not need to calculate the total SSE.

Routine for finding a local minimum At the mth iteration (m = 0, 1, . . .), let Dm

denote the feasible region. Do Loop until Lemma 7 and Lemma 8 are satisfied.
Loop For l = 1, . . . , N :

1. Assume that the must-link closure Ll = {al1, . . . , alrl
} is assigned to cluster C j .

Let sl = min q �= j
q∈Dm
q∈Fl

∑rl
p=1

∥∥al p − cq
∥∥2

Mq
−

∥
∥
∥rl cq−∑rl

p=1 al p

∥
∥
∥

2

Mq
nq+rl

. If

sl <

⎧
⎪⎨

⎪⎩

∑rl
p=1

∥∥al p − c j
∥∥2

M j
+

∥
∥
∥rl c j−∑rl

p=1 al p

∥
∥
∥

2

M j
n j−rl

n j > rl
∑rl

p=1

∥∥al p − c j
∥∥2

M j
n j = rl

,

move Ll to any cluster in argmin sl and update SSE according to Corollary 1.
2. Calculate cannot-link closures of Ll for each i = 1, . . . , k based on the procedure

on p. 20. Swapping according to Lemma 8, until no swapping can reduce SSE.

Remark 6 Note that in the above routine, we only search among vertices. The number
of vertices of the feasible region of (1) is finite. And the objective value SSE is strictly
decreased after each pivot. Hence, the number of steps for finding a local minimum is
finite.

4.2.2 Construction concavity cuts

In this part, we show how to construct the concavity cut (23). At the mth iteration, let
Y 0 ∈ R

N×k be a vertex of Dm and a local optimal solution to (26). Let γ be the smallest
SSE obtained from the previous iterations. Next, we will give the formulations of U
and θi in (23).
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(1) Adjacent vertices. The feasible region of (3) does not have full dimension: each
vertex is adjacent to at most N × (k − 1) other vertices. In order to form U in (23) so
that U is invertible, we add artificial vertices outside Dm so that Y 0 has N×k adjacent
vertices.

Let Ei, j denote the matrix whose (i, j) entry is 1, the other entries are 0. Let E(i,·)
denote the matrix whose entries are all 0 except the i th row being a vector of all 1’s.
For l = 1, . . . , N , assume that must-link Ll = {ali }rl

i=1 is assigned to cluster Cl j . Let
Zl,i (i = 1, . . . , k; i �= l j ) denote the assignment matrix different from Y 0 only in
the assignment of Ll : Ll is assigned to cluster Ci in Zl,i instead of to cluster Cl j in
Y 0. Fix any 1 ≤ l p ≤ k, l p �= l j . Let Zl,l j denote the matrix different from Y 0 only
in its (l, l p) entry being 1 as well, i.e.,

Zl,i =
{

Y 0 − El,l j + El,i i �= l j

Y 0 + El,l p i = l j
.

Then Zl,i (l = 1, . . . , N ; i = 1, . . . , k) are N × k adjacent vertices of Y 0, although
some of them may not be feasible due to cannot-links. We form the vector y0 by
stacking all the columns of Y 0 together. Similarly, we form the vectors zl,i by stacking
all the columns of Zl,i together correspondingly. It is not hard to see that U = [z1,1−
y0, . . . , y1,k−y0, . . . , zN ,k−y0] has full rank. Let I represent the identity matrix. Then
it is straightforward to verify that U−1 is a block diagonal matrix with its lth block being

I + E(l j ,·) − E(l p,·) − El j l j .

Because Zl,l j and some Zl,li are not feasible to (3), a part of the simplex conv{y0,

z1,1, . . . , z1,k, . . . , zN ,k} lies outside the feasible region of (26); nevertheless, the
concavity cut can exclude some parts of the feasible region of (3).

(2) The cutting plane. From the adjacent vertices Zl,i of Y 0, we obtain that the
coefficients of (25) are

π l,i =
{

1
θ l,i − 1

θ l,l p i �= l j

− 1
θ l,l p i = l j

, πy0 = −
n∑

l=1

1

θ l,l p
.

Next, let’s determine the θ ’s.
Let Fl be defined as in (17) for the must-link Ll . Then θ l,l j=∞, and θ l,i=1 for i ∈

({1, . . . , K }\Fl). By Corollary 1, for i ∈ Fl\{l j }, θ l,i is a solution to the problem below.

max s

s.t. 0 ≤ s ≤ nl j
rl

SSE(Y 0)+ u ≥ γ,

(27)
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where

u =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∥∥
∥srl cold

i −s
∑rl

p=1 al p

∥∥
∥

2

Mi
nold

i +srl
−

∥
∥
∥srl cold

j −s
∑rl

p=1 al p

∥
∥
∥

2

M j

nold
j −srl

+s
∑rl

p=1

[∥∥al p − cold
i

∥∥2
Mi
−

∥∥∥al p − cold
j

∥∥∥
2

M j

]
(nnew

j > 0, nnew
i > 0);

−
∥
∥
∥srl cold

i −s
∑rl

p=1 al p

∥
∥
∥

2

Mi
nold

i +srl

+s
∑rl

p=1

[∥
∥al p − cold

i

∥
∥2

Mi
−

∥
∥∥al p − cold

j

∥
∥∥

2

M j

]
(nnew

j = 0, nnew
i > 0);

0 (nnew
i = 0).

For the sake of notation simplification, we use j to represent l j in the formulation for
u. The first constraint in (27) keeps the assignment matrix in the feasible region where
SSE is a concave function by Lemma 1.

It is not difficult to solve (27). When nnew
j = 0 and nnew

i > 0, we have srl = n j ,

i.e. s = n j
rl

; when nnew
i = 0, we have s = 0. From Y 0 being a local minimum, we

have θ l,i ≥ 1. It is also easy to verify that

SSE(Y 0)+ u− γ is continuous on [0,
nl j

rl
] and is nonnegative at s = 1. (28)

When nnew
j > 0 and nnew

i > 0, multiplying (nold
i + srl)(nold

j − srl) to both sides

of SSE(Y 0) + u − γ ≥ 0 will reduce it to a cubic polynomial inequality in s, i.e.
b3s3 + b2s2 + b1s + b0 ≥ 0 with

b3 = rl

∥
∥∥∥∥∥

rlcold
i −

rl∑

p=1

al p

∥
∥∥∥∥∥

2

Mi

− rl

∥
∥∥∥∥∥

rlcold
j −

rl∑

p=1

al p

∥
∥∥∥∥∥

2

M j

−r2
l

rl∑

p=1

[∥
∥∥al p − cold

i

∥
∥∥

2

Mi
−

∥
∥∥al p − cold

j

∥
∥∥

2

M j

]
,

b2 = r2
l

[
γ − SSE(Y 0)

]
− nold

j

∥∥∥∥
∥∥

rlcold
i −

rl∑

p=1

al p

∥∥∥∥
∥∥

2

Mi

− nold
i

∥∥∥∥
∥∥

rlcold
j −

rl∑

p=1

al p

∥∥∥∥
∥∥

2

M j

+rl(n
old
j − nold

i )

rl∑

p=1

[∥∥∥al p − cold
i

∥∥∥
2

Mi
−

∥∥∥al p − cold
j

∥∥∥
2

M j

]
,

b1 = (nold
j −nold

i )rl

[
SSE(Y 0)−γ

]
+nold

i nold
j

rl∑

p=1

[∥∥∥al p−cold
i

∥∥∥
2

Mi
−

∥∥∥al p−cold
j

∥∥∥
2

M j

]
,

b0 = nold
i nold

j

[
SSE(Y 0)− γ

]
.
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All the coefficients of SSE(Y 0)+ u− γ are real; so it can only have one or three real
roots with the possibility of some equal roots if b3 �= 0. The three roots of the corres-
ponding cubic equation can be obtained by Cardano’s formula. The representation of
θ i,l depends on the coefficients b3, . . . , b0. We categorize the representations based
on the signs of b3 below.

Case 1 b3 > 0.
When SSE(Y 0)+ u− γ has only one root s1, by (28), we have s1 ≤ 1; so

θ l,i = nl j

rl
.

When SSE(Y 0)+u− γ has three roots s1 ≥ s2 ≥ s3, by (28), we get either s1 ≤ 1
or s3 ≤ 1 ≤ s2. Then

θ l,i =
{ nl j

rl
s1 ≤ 1

min(s2,
nl j
rl

) s3 ≤ 1 ≤ s2.

Case 2 b3 < 0.
When SSE(Y 0)+u−γ has only one root s1, by (28), we obtain s1 ≥ 1. Therefore,

θ l,i = min

(
s1,

nl j

rl

)
.

When SSE(Y 0) + u − γ has three roots s1 ≥ s2 ≥ s3, by (28), we have either
s3 ≥ 1 or s2 ≤ 1 ≤ s1. Then

θ l,i =
{

min(s3,
nl j
rl

) s3 ≥ 1

min(s1,
nl j
rl

) s2 ≤ 1 ≤ s1 .

Case 3 b3 = 0.
By the definition of b3, we have

∥∥
∥∥∥∥

rlcold
i −

rl∑

p=1

al p

∥∥
∥∥∥∥

2

Mi

−
∥∥
∥∥∥∥

rlcold
j −

rl∑

p=1

al p

∥∥
∥∥∥∥

2

M j

= rl

rl∑

p=1

[∥∥∥al p−cold
i

∥∥∥
2

Mi
−

∥∥∥al p−cold
j

∥∥∥
2

M j

]
.

Plugging the above equality into the definition of b2, we get

b2 = r2
l

[
γ − SSE(Y 0)

]
− nold

i

∥∥∥∥
∥∥

rlcold
i −

rl∑

p=1

al p

∥∥∥∥
∥∥

2

Mi

− nold
j

∥∥∥∥
∥∥

rlcold
j −

rl∑

p=1

al p

∥∥∥∥
∥∥

2

M j

,

from which we obtain b2 ≤ 0.
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(i) If b2 = 0, we have

ci
old = cold

j =
1

rl

rl∑

p=1

al p , SSE(Y 0) = γ,

which implies b0 = 0. By (28),

θ l,i = nl j

rl
.

(ii) When b2 < 0, along with b0 ≥ 0, we have b2
1−4b2b0 ≥ 0. So SSE(Y 0)+u−γ

has two roots; and 1 is between the two roots by (28). Therefore,

θ l,i = min

⎛

⎝
−b1 −

√
b2

1 − 4b2b0

2b2
,

nl j

rl

⎞

⎠ .

When Ll is a singleton {al}, we get closed form solution for the second inequality
in (27): s ≤ s∗ with

s∗ = −
(
SSE(Y 0)− γ

) (
ni − nl j

)+ ni nl j

(
‖vl,l j ‖2Ml j

− ‖vl,i‖2Mi

)
−√ω

2

(
SSE(Y 0)− γ + nl j ‖vl,l j ‖2Ml j

+ ni‖vl,i‖2Mi

) ,

where

ω =
[
(SSE(Y 0)− γ )(ni + nl j )+ ni nl j (‖vl,l j ‖2Ml j

− ‖vl,i‖2Mi
)
]2

+ 4(SSE(Y 0)− γ )nl j ni (nl j + ni )‖vl,i‖2Mi
.

Observe that when SSE(Y 0) = γ , since Y 0 is a local minimum of (1), by Lemma 3,
we have ‖vl,i‖Mi ≥ ‖vl,l j ‖Ml j

; hence

s∗ =
nl j ni (‖vl,i‖2Mi

− ‖vl,l j ‖2Ml j
)

nl j ‖vl,l j ‖2Ml j
+ ni‖vl,i‖2Mi

≤ nl j .

Therefore, in this case, θ l,i = s∗.
The distance from the concavity cut (25) to Y 0 is 1

‖π‖2 . The smaller ‖π‖, the dee-

per the cut, i.e., the larger the simplex Spx. For fixed θ l, j , the minimal solution to

the convex univariate function
∑k

j=1(
1

θ l, j − x)2 is achieved at x∗ =
∑k

j=1
1

θl, j

k . To
minimize ‖π‖, we choose l p satisfying
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l p ∈ arg min
j∈{1,...k}

∣
∣∣∣x
∗ − 1

θ l, j

∣
∣∣∣ .

4.2.3 Finite convergence

One of the vertex of the simplex Spx cut off by a concavity cut in our algorithm is a local
minimum of (1); so each concavity cut eliminates at least one vertex of (1). Since the
number of vertices of (1) is finite, the number of concavity cuts can be added is finite.
In addition, remark 6 states that only finite pivots are needed to reach a local minimum
of (1). Therefore, our method can find a global minimum of (1) in finite steps.

4.2.4 Complexity

The k-means problem is NP-hard for k ≥ 2 (Drineas et al. 2004). For semi-supervised
clustering, it is proved in Davidson and Ravi (2005); Klein et al. (2002) that the fea-
sibility problem, i.e. determining whether there is a feasible solution satisfying all
cannot-link constraints, is NP-complete. Therefore, we do not attempt to prove the
polynomiality of our algorithm.

The main computations of our cutting algorithm involve two steps: (1) the routine
for finding a local minimum on p. 24, and (2) solving the linear program (25). In step
(1), about O(pi ·wi ) operations are required, where pi is the total number of iterations
and wi is the number of nonzeros in the assignment matrix after adding i − 1 conca-
vity cuts. For step (2), since Di is the intersection of the cutting planes π j (y − y j )

(for j = 0, . . . , i) and the feasible region of (26), the maximal number of nonzeros
in the coefficient matrix of the polyhedral representation of Di is wi + 2vi + iwi ,
where vi is the number of remaining cannot-links after adding i − 1 cutting planes.
Note that wi ≤ k N and vi is no more than the original number of cannot-links. If
N and k are not too large, an approximate solution within any accuracy to (25) can
be obtained in polynomial time in the size of input data by interior-point methods
(Nesterov and Nemirovskii 1994). For very large scale instances, Krylov-subspace
iterations can be incorporated in the linear programming solver; see, for instance
Freund and Jarre (1997). The main computations of each iteration of Krylov-subspace
solver are matrix-vector multiplications. And the number of multiplications is linear
in the nonzeros of the coefficient matrix of the polyhedral representation of Di , i.e.
O (

(i + 1)wi + 2vi
)
. Note that Di+1 can be represented as Di plus a concavity cut.

And we have a sequence of feasible points obtained from the process of finding a
minimum solution in Di . For this type of linear programs, the dual simplex method
(Forrest and Goldfarb 1992) takes only a few iterations to reach an optimal solution of
(25). The majority of operations of the simplex method for large-scale sparse problems
consist of sparse inner products and additions to a dense vector of length m, where m
is the number of variables. The number of operations is linear in m; see for instance
Forrest and Tomlin (1992).

We can also incorporate our cutting algorithm into methods for large-scale cluste-
ring. For instance, we can use parallel and distributed computation, sample the data,
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partition the data into disjoint sets and then cluster these sets separately. For high
dimensional data, we can apply dimensionality reduction techniques such as PCA
(principle component analysis), SVD (singular value decomposition), to map the data
to a new space.

5 Numerical examples

We have implemented the above algorithm in Ansi C with the linear programming
subroutines of our cutting plane method solved by the CPLEX 91 callable library
(www.ilog.com/products/cplex). The code is available on the author’s web page.

Our algorithm stops if (1) a global solution is obtained; or (2) more than 21 cuts
are added; or (3) no improvement in SSE after 8 consecutive cuts.

Numerical results on traditional clustering show that our cutting method can get a
better solution than the k-means algorithm; see Xia and Peng (2005). Test results on
semi-supervised clustering (Xia 2007) demonstrate that we can generate local mini-
mal solutions better than solutions obtained by the constrained k-means algorithm; and
our algorithm produces better solutions than these local minima. The computation was
done on a Toshiba satellite notebook, with Intel Pentium M processor of 1.70 GHz,
496 MB of RAM, Windows XP home edition operating system. The test data sets in
Xia (2007) are from the UCI machine learning repository (Murphy and Aha 1994).
And our algorithm stopped within four seconds on all these test data sets with up to
1,500 instances.

In this part, we compare our method with some popular semi-supervised clustering
algorithms. All the computations here were done on a shared Linux machine with an
Intel XEON processor of 3.2 GHz (dual CPU) with HT, 4G RAM. We compare our
algorithm with the cop kmeans algorithm (Wagstaff et al. 2001), the cop kmeans+
XNJR metric algorithm (the algorithm of Xing et al. 2002), the cop kmeans + RCA
metric algorithm (the algorithm of Bar-Hillel et al. 2005), the EM RCA algorithm
(Bar-Hillel et al. 2005), the wekaUT algorithm (Bilenko et al. 2004). We coded the
cop kmeans algorithm based on (Wagstaff et al. 2001). We downloaded the codes
for learning the XNJR and the RCA metrics from their authors’s web pages. We
downloaded the EM RCA from Bar-Hillel’s web page, downloaded the wekaUT from
University of Texas’s RISC web page (Repository of Information on Semi-supervised
Clustering). Unless specified otherwise, data sets in this part are downloaded from the
UCI machine learning repository.

In the tables below, ‘cop kmeans’ means that the results are generated by the cop
kmeans algorithm; ‘cut’ means that the results are obtained by the cutting algorithm
with the distance metric being the Euclidean metric. ‘cop XNJR’ means that the results
are generated by the cop kmeans+XNJR metric; ‘cut XNJR’ means that the results are
obtained by our cutting algorithm + XNJR metric; ‘cop RCA’ means that the results
are generated by the cop kmeans+ RCA metric; ‘cut RCA’ means that the results are
obtained from our cutting algorithm+ RCA metric; ‘EM RCA’ means that the results
are generated by the EM RCA; ‘wekaUT’ means that the results are generated by the
wekaUT.
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Since the ‘cop kmeans’ and the ‘cut’ have the same objective function, we can
compare them based on the objective values of their solutions. For each data set, we
ran the ‘cop kmeans’ and the ‘cut’ 100 times with random starts. For each run, the
starting points of the ‘cop kmeans’ and the ‘cut’ are the same. Likewise, we com-
pare the ‘cop XNJR’ with the ‘cut XNJR’, the ‘cop RCA’ with the ‘cut RCA’, based
on the objective values of their solutions, since each pair has the same objective
function. For each metric, we ran corresponding algorithms 100 times with random
starts. For each run, the starting points of corresponding pair of algorithms are the
same.

For each data set, we compare the algorithms with various numbers of must-links
and cannot-links. We describe the comparison results in two different tables. In the
first table for each data set, the row ‘Obj’ is the average ratio of the objective value of
the solution to the initial objective value of the 100 runs. For instance, the value in the
column ‘cop kmeans’ and the row ‘Obj’ is

1

100

100∑

i=1

SSE from the cop k-means algorithm at the i th run

SSE from the initial partition at the i th run
.

The smaller the value in ‘Obj’, the better. The row ‘CPU’ is the average CPU time in
seconds of the 100 runs. Because the metrics in the objective functions of the EM RCA
and the wekaUT change at each iteration, it is difficult to compare the cutting algorithm
with them by objective values. We compare them by some clustering validating indices
in the second table. In the second table for each data set, ‘AI’ represents the adjusted
Rand index; ‘RI’ is the unadjusted Rand index; ‘MI’ is the Mirkin’s index; and ‘HI’
is the Hubert’s index. The higher ‘AI’, ‘RI’, ‘HI’, and the lower ‘MI’, the better. The
MATLAB code for measuring the indices is written by David Corney, downloaded
with the CVT-NC package from the MATLAB central (http://www.mathworks.com/
matlabcentral/).

The test results from the EM RCA are sensitive to initial parameters. We used the
code ‘best_params.m’ included in the EM RCA package to generate initial parameters.
Some times this code didn’t converge; we then supplied 0 as the initial center and the
identity matrix as the initial covariance matrix.

Balance scale weight & distance database This data set was generated to model psy-
chological experiments reported by Siegler, R. S. (1976): Three Aspects of Cognitive
Development, Cognitive Psychology, 8, 481–520. Number of instances: 625; number
of attributes: 4; number of classes: 3.

1. Number of instances must-linked: 156; number of instances cannot-linked: 94.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.741386 0.731789 0.431341 0.425626 0.585552 0.579776
CPU 0.012500 0.636300 0.007700 0.446800 0.009300 0.473200
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AR RI MI HI

EM RCA 0.354083 0.692215 0.307785 0.384431
wekaUT 0.196011 0.616297 0.383703 0.232595
cut 0.326255 0.678277 0.321723 0.356554
cut XNJRa 0.539150 0.779759 0.220241 0.559518
cut RCA 0.533037 0.776738 0.223262 0.553477
a The best of all the clustering results

2. Number of instances must-linked: 218; number of instances cannot-linked: 126.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.752434 0.741034 0.565527 0.556787 0.630256 0.620857
CPU 0.012800 0.543900 0.010400 0.517400 0.011100 0.520500

AR RI MI HI

EM RCAa 0.026413 0.473169 0.526831 0.053662
wekaUT 0.172593 0.605067 0.394933 0.210133
cut 0.430807 0.728328 0.271672 0.456656
cut XNJRb 0.551682 0.785631 0.214369 0.571262
cut RCA 0.481501 0.752559 0.247441 0.505118
a The code ‘best_params.m’ does not work
b The best of all the clustering results

Synthetic Control Chart Time Series This data set contains 600 examples of control
charts synthetically generated by the process in the paper by Alcock and Manolopou-
los (1999): Time-Series Similarity Queries Employing a Feature-Based Approach, 7th
Hellenic Conference on Informatics. There are six different classes of control charts.
Each chart has 60 attributes.

1. Number of charts must-linked: 60; number of charts cannot-linked: 30.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.259643 0.250588 0.027610 0.023449 0.632576 0.629154
CPU 0.958700 15.892900 1.498100 19.082100 1.400300 17.638700

AR RI MI HI

EM RCA 0.427319 0.840751 0.159249 0.681503
wekaUT 0.591439 0.876138 0.123862 0.752276
cut 0.539254 0.857078 0.142922 0.714157
cut XNJR 0.498063 0.847629 0.152371 0.695259
cut RCAa 0.751622 0.930534 0.069466 0.861068
a The best of all the clustering results

2. Number of charts must-linked: 90; number of charts cannot-linked: 60.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.264281 0.252792 0.026742 0.024789 0.600107 0.594348
CPU 0.998700 16.480100 1.273900 18.185800 1.881200 24.372200
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AR RI MI HI

EM RCA 0.416484 0.812526 0.187474 0.625053
wekaUT 0.533932 0.846850 0.153150 0.693701
cut 0.538185 0.865982 0.134018 0.731964
cut XNJR 0.443760 0.845170 0.154830 0.690339
cut RCAa 0.627171 0.896767 0.103233 0.793534
a The best of all the clustering results

Johns Hopkins University Ionosphere Database This radar data was collected by a
system in Goose Bay, Labrador. Instances in this data set are complex electromagne-
tic signals of free electrons in the ionosphere. Number of instances: 351; number of
attributes: 34. There are a total of two classes, “good” and “bad”, defined by whether
there is evidence of certain types of structure in the ionosphere.

1. Number of items must-linked: 52; number of items cannot-linked: 36.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.800101 0.776615 0.456632 0.365377 0.947485 0.930310
CPU 0.035200 0.543100 0.031200 0.331100 0.067600 0.880300

AR RI MI HI

EM RCAa

wekaUT 0.136504 0.568417 0.431583 0.136834
cut 0.158586 0.579487 0.420513 0.158974
cut XNJR 0.187015 0.593846 0.406154 0.187692
cut RCAb 0.499588 0.754986 0.245014 0.509972
a The code ‘best_params.m’ does not work
b The best of all the clustering results

2. Number of items must-linked: 122; number of items cannot-linked: 64.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.863829 0.808420 0.595327 0.410939 0.966635 0.950421
CPU 0.034500 0.629300 0.023800 0.201100 0.053700 0.897700

AR RI MI HI

EM RCAa

wekaUT 0.017393 0.509158 0.490842 0.018315
cut 0.145639 0.572747 0.427253 0.145495
cut XNJR 0.178015 0.588930 0.411070 0.177859
cut RCAb 0.673459 0.838502 0.161498 0.677004
a The code ‘best_params.m’ does not work
b The best of all the clustering results

Iris Plants Database This famous data set is from Fisher,R.A. (1936): The use of
multiple measurements in taxonomic problems, Annual Eugenics, 7, Part II, 179–188.
The data set contains 3 types of iris plants. Number of instances: 150 (50 in each of
three classes); number of attributes: 4 numeric.
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1. Number of items must-linked: 12; number of items cannot-linked: 12.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.122784 0.117699 0.124550 0.118705 0.091468 0.088823
CPU 0.001700 0.129300 0.001800 0.106700 0.001500 0.134600

AR RI MI HI

EM RCA 0.903874 0.957494 0.042506 0.914989
wekaUT 0.707698 0.869978 0.130022 0.739955
cut 0.744526 0.885906 0.114094 0.771812
cut XNJR 0.744526 0.885906 0.114094 0.771812
cut RCAa 0.922177 0.965638 0.034362 0.931275
a The best of all the clustering results

2. Number of items must-linked: 16; number of items cannot-linked: 8.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.130293 0.125586 0.054175 0.050117 0.040254 0.031396
CPU 0.001600 0.141800 0.001200 0.122400 0.000600 0.107900

AR RI MI HI

EM RCA 0.801880 0.912394 0.087606 0.824787
wekaUT 0.765873 0.896644 0.103356 0.793289
cut 0.7570 0.8923 0.1077 0.7845
cut XNJRa 0.9222 0.9656 0.0344 0.9313
cut RCAa 0.9222 0.9656 0.0344 0.9313
a The best of all the clustering results

Letter Image Recognition Data This data set is downloaded from the wekaUT data
directory (letter-0.05.arff). The data were generated from randomly distorted fonts of
26 English capital alphabetic letters. Number of instances: 1,000; number of attributes:
16; number of classes: 26.

1. Number of items must-linked: 100; number of items cannot-linked: 500.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.384073 0.368775 0.130848 0.120495 0.379098 0.361797
CPU 1.428200 33.079400 1.683100 35.727200 1.421100 33.983600

AR RI MI HI

EM RCAa 0.000248 0.386887 0.613113 –0.226226
wekaUT 0.132058 0.932264 0.067736 0.864529
cut 0.139454 0.931029 0.068971 0.862058
cut XNJR 0.176416 0.937808 0.062192 0.875616
cut RCAb 0.257559 0.939159 0.060841 0.878318
a The code ‘best_params.m’ does not work
b The best of all the clustering results

123



Global optimization method

2. Number of items must-linked: 150; number of items cannot-linked: 100.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.396869 0.380331 0.176503 0.153552 0.416388 0.398808
CPU 1.368200 29.133700 1.637600 32.498500 1.313200 27.977900

AR RI MI HI

EM RCAa 0.000113 0.131093 0.868907 –0.737814
wekaUT 0.133798 0.931309 0.068691 0.862619
cut 0.166441 0.934012 0.065988 0.868024
cut XNJR 0.147764 0.932440 0.067560 0.864881
cut RCAb 0.304402 0.944276 0.055724 0.888553
a The code ‘best_params.m’ does not work
b The best of all the clustering results

MAGIC gamma telescope data 2004 This data set includes simulated data generated
by a Monte Carlo program about the pulses left by high energy gamma particles on
the photomultiplier tubes in a ground-based atmospheric Cherenkov gamma telescope,
originated from R. K. Bock, Major Atmospheric Gamma Imaging Cherenkov Teles-
cope project (MAGIC) (http://wwwmagic.mppmu.mpg.de). The data set has 19020
instances. Each instance has 10 attributes. There are two classes: gamma (signal) and
hadron (background).

1. aNumber of instances must-linked: 1,902; number of instances cannot-linked: 952.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.764353 0.741350 0.772339 0.748044 0.914651 0.905605
CPU 2.487100 25.138800 1.329600 16.327400 1.537800 16.671500

AR RI MI HI

EM RCA 0.082045 0.545102 0.454898 0.090205
wekaUT 0.017006 0.509375 0.490625 0.018750
cut 0.051625 0.534667 0.465333 0.069334
cut XNJR 0.086965 0.556589 0.443411 0.113177
cut RCAb 0.352629 0.681564 0.318436 0.363128
a We stop the cuttting algorithm if (1) a global solution is obtained; or (2) more than 11 cuts are added; or

(3) no improvement in SSE after 5 consecutive cuts
b The best of all the clustering results

2. Number of items must-linked: 2,854; number of items cannot-linked: 1,902.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.800935 0.758894 0.822353 0.772112 0.929089 0.911230
CPU 2.289600 63.566800 1.613300 86.026800 2.007400 51.418300
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AR RI MI HI

EM RCA 0.111918 0.560841 0.439159 0.121682
wekaUT 0.029971 0.516065 0.483935 0.032130
cut 0.044623 0.527542 0.472458 0.055084
cut XNJR 0.167939 0.599181 0.400819 0.198362
cut RCAa 0.366041 0.686926 0.313074 0.373852
a The best of all the clustering results

Optical Recognition of Handwritten Digits This data set is from E. Alpaydin,
C. Kaynak of the Department of Computer Engineering, Bogazici University, Istan-
bul Turkey. The data are normalized bitmaps of handwritten digits from 30 people
extracted by NIST preprocessing programs. 32 × 32 bitmaps are divided into non-
overlapping blocks of 4 × 4 and the number of on pixels are counted in each block.
We use the training set of the data set which has 3,823 instances. Each instance has
64 attributes. Each attribute is an integer in the range 0–16. It has 10 classes for digits
0, . . . , 9.

For this data set, the XNJR metric generated by its authors’ code is complex.
As a result, there is no output for ‘cop kmeans + XNJR’ and ‘cutting algorithm +
XNJR’.

1. aNumber of items must-linked: 496; number of items cannot-linked: 306.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.552918 0.546343 b b 0.699775 0.691483
CPU 30.978900 215.844500 b b 22.208700 169.439300

AR RI MI HI

EM RCAc

wekaUT 0.603633 0.926090 0.073910 0.852179
cut 0.709085 0.946841 0.053159 0.893681
cut RCAd 0.743931 0.950519 0.049481 0.901038
a We stop the cuttting algorithm if (1) a global solution is obtained; or (2) more than 11 cuts are added; or

(3) no improvement in SSE after 5 consecutive cuts
b Complex number
c No output
d The best of all the clustering results

2. Number of items must-linked: 686; number of items cannot-linked: 420.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.554776 0.547201 a a 0.689020 0.677558
CPU 28.024000 428.404800 a a 19.070700 314.095100
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AR RI MI HI

EM RCAb

wekaUT 0.490691 0.900861 0.099139 0.801722
cut 0.711620 0.946219 0.053781 0.892439
cut RCAc 0.879813 0.978382 0.021618 0.956764
a Complex number
b No output
c The best of all the clustering results

Page Blocks Classification Each observation of the data set consists of some nume-
rical attributes of one block from 54 distinct documents that has been detected by a
segmentation process. The aim is to classify all the blocks. There are 5 types of docu-
ments: text, horizontal line, picture, vertical line and graphic. Number of instances:
5,473; number of attributes: 10; number of classes: 5.

1. Number of blocks must-linked: 548; number of blocks cannot-linked: 274.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.124673 0.124331 0.088712 0.088484 0.156298 0.140886
CPU 0.917800 15.837600 0.834700 15.885600 0.695000 13.855700

AR RI MI HI

EM RCAa 0.096336 0.404766 0.595234 −0.190469
wekaUT 0.015314 0.414114 0.585886 −0.171773
cut 0.013137 0.567416 0.432584 0.134833
cut XNJR 0.028545 0.583985 0.416015 0.167970
cut RCAb 0.591593 0.889803 0.110197 0.779605
a The code ‘best_params.m’ does not work
b The best of all the clustering results

2. Number of blocks must-linked: 1,204; number of blocks cannot-linked: 820.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.136029 0.134312 0.119725 0.118266 0.187115 0.166168
CPU 1.041000 14.505300 0.983700 15.843300 0.906500 17.130800

AR RI MI HI

EM RCA 0.094252 0.401777 0.598223 0.196445
wekaUT 0.015314 0.414114 0.585886 0.171773
cut 0.031681 0.533806 0.466194 0.067613
cut XNJR 0.040625 0.544503 0.455497 0.089006
cut RCAa 0.590672 0.871905 0.128095 0.743811
a The best of all the clustering results

Protein This data set is downloaded from Eric Xing’s web page. It has 116 instances
with 20 attributes each. There are 6 classes.
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1. Number of items must-linked together: 18; number of items cannot-linked toge-
ther: 12.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.681749 0.654520 0.175389 0.164417 0.637941 0.607605
CPU 0.017700 0.515400 0.021500 0.458000 0.021000 0.545100

AR RI MI HI

EM RCAa 0.004838 0.242729 0.757271 −0.514543
wekaUT 0.276166 0.773163 0.226837 0.546327
cut 0.312395 0.800750 0.199250 0.601499
cut XNJRb 0.318041 0.804648 0.195352 0.609295
cut RCA 0.221767 0.776462 0.223538 0.55292
a The code ‘best_params.m’ does not work
b The best of all the clustering results

2. Number of items must-linked together: 26; number of items cannot-linked toge-
ther: 18.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.681749 0.654520 0.175389 0.164417 0.637941 0.607605
CPU 0.017700 0.515400 0.021500 0.458000 0.021000 0.545100

AR RI MI HI

EM RCAa 0.011151 0.276762 0.723238 0.446477
wekaUT 0.183484 0.767616 0.232384 0.535232
cutb 0.329930 0.809295 0.190705 0.618591
cut XNJR 0.256252 0.782159 0.217841 0.564318
cut RCA 0.103120 0.735382 0.264618 0.470765
a The code ‘best_params.m’ does not work
b The best of all the clustering results

Statlog (Landsat Satellite) Data Set The database consists of the multi-spectral
values of pixels in 3 × 3 neighborhoods in a satellite image generated from Landsat
Multi-Spectral Scanner image date purchased from NASA by the Australian Center
for Remote Sensing. We use the training set of the data set, which has 4,435 instances,
36 attributes, and 6 classes,

1. Number of items must-linked together: 444; number of items cannot-linked: 222.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.229574 0.224957 0.069141 0.065167 0.581613 0.578327
CPU 7.948400 136.879700 7.681300 113.289700 8.606100 125.390900
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AR RI MI HI

EM RCA 0.366415 0.801548 0.198452 0.603095
wekaUT 0.378833 0.793589 0.206411 0.587178
cut 0.535568 0.858873 0.141127 0.717746
cut XNJR 0.584852 0.863922 0.136078 0.727843
cut RCAa 0.654945 0.883567 0.116433 0.767135
a The best of all the clustering results

2. aNumber of items must-linked together: 666; number of items cannot-linked: 444.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.234156 0.228742 0.040589 0.039941 0.587995 0.583399
CPU 7.853300 57.579300 9.855400 64.118500 6.521000 52.846500

AR RI MI HI

EM RCA 0.375987 0.804853 0.195147 0.609707
wekaUT 0.345386 0.783161 0.216839 0.566323
cut 0.539893 0.859985 0.140015 0.719971
cut XNJR 0.530561 0.844788 0.155212 0.689577
cut RCAb 0.676902 0.891386 0.108614 0.782772
a We stop the cuttting algorithm if (1) a global solution is obtained; or (2) more than 11 cuts are added; or

(3) no improvement in SSE after 5 consecutive cuts
b The best of all the clustering results

Small Soybean Database This is a subset of the data from R.S. Michalski and R.L.
Chilausky (1980): Learning by Being Told and Learning from Examples: An Experi-
mental Comparison of the Two Methods of Knowledge Acquisition in the Context of
Developing an Expert System for Soybean Disease Diagnosis, International Journal
of Policy Analysis and Information Systems, Vol. 4, No. 2.

Number of instances: 47; number of attributes: 35; number of classes: 4.

1. Number of items must-linked together: 4; number of items cannot-linked: 24.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.344980 0.322840 0.049682 0.036741 0.287293 0.269655
CPU 0.010600 0.225600 0.007900 0.215100 0.008900 0.223700

AR RI MI HI

EM RCAa

wekaUT 0.548885 0.803885 0.196115 0.607771
cut 0.551276 0.833488 0.166512 0.666975
cut XNJR 0.315361 0.744681 0.255319 0.489362
cut RCAb 0.581409 0.842738 0.157262 0.685476
a No output
b The best of all the clustering results
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2. Number of items must-linked together: 8; number of items cannot-linked: 4.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.365990 0.341289 0.044405 0.044304 0.246952 0.200295
CPU 0.008300 0.207900 0.010600 0.085700 0.009600 0.108900

AR RI MI HI

EM RCAa

wekaUT 0.524844 0.817761 0.182239 0.635523
cut 0.625730 0.859389 0.140611 0.71877
cut XNJR 0.409350 0.774283 0.225717 0.548566
cut RCAb 1.000000 1.000000 0.000000 1.000000
a No output
b The best of all the clustering results

Wine Recognition Data This data set is from Forina, M. et al. PARVUS—An Exten-
dible Package for Data Exploration, Classification and Correlation. Each instance in
the data set consists of the quantities of 13 constituents found in each of the three types
of wines grown in the same region in Italy but derived from three different cultivars.
There are 178 instances, each has 13 attributes, and a total of 3 classes.

1. Number of items must-linked together: 44; number of items cannot-linked toge-
ther: 26.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.170750 0.169710 0.168806 0.167999 0.554292 0.536157
CPU 0.007200 0.236700 0.005800 0.216700 0.008100 0.295900

AR RI MI HI

EM RCA 0.607339 0.825176 0.174824 0.650352
wekaUT 0.699030 0.865486 0.134514 0.730972
cut 0.447852 0.753634 0.246366 0.507268
cut XNJR 0.444582 0.752301 0.247699 0.504602
cut RCAa 0.739974 0.884149 0.115851 0.768298
a The best of all the clustering results

2. Number of items must-linked together: 72; number of items cannot-linked toge-
ther: 44.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.217126 0.194179 0.214235 0.193356 0.502998 0.472176
CPU 0.004900 0.228600 0.005200 0.187300 0.005400 0.181300
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AR RI MI HI

EM RCA 0.734012 0.881673 0.118327 0.763347
wekaUT 0.441603 0.750651 0.249349 0.501301
cut 0.452178 0.754967 0.245033 0.509935
cut XNJR 0.474542 0.764235 0.235765 0.528471
cut RCAa 0.948716 0.977084 0.022916 0.954167
a The best of all the clustering results

Protein Localization Sites (Yeast) This data set is from Kenta Nakai (http://psort.
ims.u-tokyo.ac.jp/). Each instance is the information of an amino acid sequence and
its source origin. The classes are the Cellular Localization Sites of Proteins. Number
of instances: 1,484, number of attributes: 9, and number of classes: 10.

1. Number of items must-linked: 296; number of items cannot-linked: 178.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.433904 0.419116 0.287329 0.272538 0.393354 0.379990
CPU 0.393600 10.847700 0.388100 10.748400 0.362800 12.091300

AR RI MI HI

EM RCAa 0.012431 0.295460 0.704540 0.409080
wekaUT 0.166856 0.745925 0.254075 0.49184
cut 0.159939 0.752909 0.247091 0.505817
cut XNJR 0.145082 0.751556 0.248444 0.503113
cut RCAb 0.173515 0.750714 0.249286 0.501428
a The code ‘best_params.m’ does not work
b The best of all the clustering results

2. Number of items must-linked: 520; number of items cannot-linked: 296.

cop kmeans cut cop XNJR cut XNJR cop RCA cut RCA

Obj 0.462089 0.448656 0.246241 0.240499 0.427164 0.408590
CPU 0.325000 11.546800 0.363000 11.932900 0.359400 12.136200

AR RI MI HI

EM RCAa 0.010443 0.337053 0.662947 0.325895
wekaUT 0.161922 0.739867 0.260133 0.479733
cut 0.177142 0.750328 0.249672 0.500655
cut XNJR 0.156789 0.755752 0.244248 0.511504
cut RCAb 0.195498 0.758225 0.241775 0.516450
a The code ‘best_params.m’ does not work
b The best of all the clustering results

Conclusion For all the data sets we have tested, out ‘cutting algorithm’ generates
better solutions than the ‘cop kmeans’ does; the ‘cut + metric’ generates better solu-
tions than the ‘cop kmeans + metric’ does, where the metric is the RCA or the XNJR.
And the ‘cut’, or the ‘cut RCA’, or the ‘cut XNJR’ generates the best solutions among
all the algorithms tested here.
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